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We extend the finite-size scaling theory into the complex temperature plane and present an al-
ternative scenario for the second-order phase transition where the second-order derivatives of the
partition function diverge at the transition point with the same exponent but different (discontin-
uous) amplitudes A+. The complex scaling partition function Z, for the d = 3 Ising model on a
simple-cubic lattice is calculated using microcanonical Monte Carlo technique and is used to verify
the scenario. The method of complex Z, can be used as an alternative to the series method for the

study of the second-order phase transition.

I. INTRODUCTION

It has been a central theme since the discovery of statis-
tical mechanics to understand how the analytic partition
function for the finite-size system acquires a singularity
when we take the thermodynamic limit if the system un-
dergoes a phase transition [1]. The Lee-Yang theory [2]
has partly furnished the answer to this quest. In the
case of the first-order transition, the zeros of the parti-
tion function in complex fugacity plane eventually form a
cut that separate two phases in the thermodynamic limit.

In the case of the second-order or continuous phase
transition no theory similar to the Lee-Yang theory ex-
ists. However, initiated by Fisher [3], there has been
an extensive study of zeros of the partition function in
complex temperature plane [4-6]. Recently the finite-size
scaling theory has been incorporated in this endeavor and
made some progress [7-9]. In these studies, attention has
been focused only on the location of zeros of the parti-
tion function in the complex temperature plane in order
to discover something similar to the Lee-Yang theory.

In this paper we present an alternative scenario for
the second-order phase transition where the second-order
derivatives of the partition function diverge at the tran-
sition point with the same exponent but different (dis-
continuous) amplitudes, A4 . Instead of studying the ze-
ros of the partition function we study the whole of the
singular part of the partition function (we will call it
the scaling partition function and abbreviate as SPF) in
the complex temperature plane. Unlike the case of the
first-order phase transition, two phases are separated by
a domain in the complex temperature plane where the
SPF vanishes in the bulk limit. The SPF of the high-
and low-temperature phases oscillates with different pe-
riods which are related to the amplitudes, A+. These
two domains are smoothly connected to the central do-
main of vanishing SPF. This scenario elucidates how a
single analytic function, SPF, manifests the discontinuity
in the amplitude, A4, in the thermodynamic limit. We
tested this theory by calculating the SPF for the d = 3
Ising model using the microcanonical Monte Carlo (MC)
method [12] and found the calculated SPF confirm all the
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prediction of the theory. We also found that the complex
SPF can be used as an alternative method (to the series
method) to estimate the amplitudes, A4 with compara-
ble or better precision.

II. FINITE-SIZE SCALING
IN THE COMPLEX TEMPERATURE PLANE

According to the two scaling factor universality hy-
pothesis put forward by Privman and Fisher [10], the
free energy density f consists of the analytic part f, and
the singular part f,, i.e.,

f="Ffa+ fo- (1)
The singular part behaves as
fo(t; L) =~ L™¢W (DtLY"), (2)

where L is the side of d-dimensional cube (e.g., in the
unit of lattice constant), ¢ is the thermal scaling field,
1/v is the corresponding critical exponent, and D is the
nonuniversal metric factor. The scaling function W can
be made universal within a universality class by proper
choice of nonuniversal metric factor together with nor-
malization of W itself, as was done in [11].
The partition function now can be written as

Z=2.Z,, (3)

where Z, = exp(L%f,) and Z,(t) = exp(L%fs). Let us
concentrate only on the SPF, Z,, from now on. In terms
of scaling variable z = DtL/¥, Z, can be written as

Zs(z) = exp[W ()], (4)

if L is sufficiently large so that corrections to scaling is
negligible.

Let us now analytically continue into the complex ¢
plane by writing t = re®®. Then

Z, = exp[W(()], (5)

where ¢ = DLY/”re®. By writing p = DLY*r, we now
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have complex scaling partition function
Z, = exp[W (pe'?)]. (6)

Although the SPF in the real axes is a monotonous
U-shaped function, it manifests rich complex features in
the complex temperature plane. Since the discontinuity
in the amplitude, A, , appears in the asymptotic behavior
of the SPF in the bulk limit, let us see what happens to
the asymptotic behaviors:

W(z) = Qi (xx)™ (M

as £ — $o0o, when we analytically continue +x into the
complex plane. They will become

Z,(pe'®) ~ exp(Qp™ e o*), (8)

where 0, = 0 and 0_ = 7w — 0. The real and imaginary
part of the SPF in this limit can be written as

Re(Z,) = eQp" cos(dvby) cos[Q+p™ sin(dvfi)]  (9)
and
Im(Z,) =~ Q™ cos(dvoy) sin[Q 4 p® sin(dvf1)].  (10)

The above relations show that there are three regions
where the SPF manifests distinct behaviors. Clearly both
real and imaginary parts are oscillating functions with
the period and amplitude (the magnitude of the complex
SPF) which has the same functional dependence on 64
although they are different at low- and high-temperature
sides due to different values, Q1. The magnitude of the
SPF in the bulk limit p — Fo0o0 is very large near the
real axes but decreases as the phase angle 0. increase
and eventually vanishes as 64 become larger than 90°/dv
since

1Zs(p = 00)|| & e~ QuxP™ | con(drfs)] (11)

Therefore the asymptotic forms (9) and (10) break down
beyond these phase angles. In any case if v > d~1, there
exists a finite domain where the magnitude of the SPF
vanishes in the asymptotic limit so that two discontinu-
ous regions can be joined smoothly to make the SPF con-
tinuous in the whole complex temperature plane. This
picture is drastically different from that of the first-order
phase transition where the line of zeros eventually forms
a branch cut that separates two phases in the bulk limit.

We can exploit the oscillating behavior of the SPF near
the real axes in order to study the discontinuity of the
amplitudes Q4+ which is proportional to A1. Q4+ depen-
dence of the magnitude of the SPF does not differ much
from that on the real axes. Q1 dependence of the period,
on the other hand, is a unique feature of the SPF in the
complex temperature plane and worth further study. The
period of the oscillation can be studied by looking at the
zero-height contours of the SPF. Explicitly the equations
for the zero-height contour of the real and imaginary part
of the SPF,
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Re(Z,) =0 (12)
and
Im(Z,) =0, (13)
become in the asymptotic limit
Q+p™ sin(dvli) = 7/2 + km (14)
and
Q1 p% sin(dvly) = kr (15)

where k£ = 0,1, ... .

These equations can be used to estimate Q4 if we can
calculate contours by some numerical method. It should
be noted that each set of above equations also represents
the locus of the maxima or minima of the other part of
the SPF due to the Cauchy-Riemann relation. It should
be further noted that the zeros of the SPF can be found
by locating the simultaneous root of the Egs. (12) and
(13). Obviously the asymptotic contour lines given by
Egs. (14) and (15) do not cross each other. This means
that zeros of the partition function do not exist in the
asymptotic region of the oscillating domain. Zeros may
exist in the central domain of vanishing SPF. However,
any zeros in the asymptotic region in this domain will be
fused into the sea of the flat SPF.

III. APPLICATION
TO THE d = 3 ISING MODEL

We have performed MC calculations on the Ising model
on a simple cubic lattice with periodic boundary condi-
tions, of sizes L® with even L = 10,...,24. The micro-
canonical Monte Carlo technique [12] lets us calculate
the whole partition function and the recently developed
technique [11] allows us to isolate the singular part of the
partition function.

For a spin-% Ising model of N spins in the absence of
an external field, the energy of the system can be written
as

E{S:H) =—T ) SiS;, (16)
(3,3)
where S; is the spin variable assuming +1 values, J is the
exchange energy, and (7, j) runs over interacting nearest
neighbor pairs 1, j.
The partition function Z is defined as
2N
Z ="y exp[-BE{S:})]. (17)
{s:}

As usual [11,12] we write

Em
Z =" Q&) exp(—pBE) (18)

E=&

using £ and Q(£), the number of configurations with
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given £. This expression can be further rewritten using

the low-temperature variable u defined as e=%%7 | as
n=qN/8
Z = Z unmav/EqQ (19)
n=0

where n = £/4J + ¢N/8. The summation is restricted
only to the positive temperature side or ferromagnetic
energies.

In measuring Q(€), we have used the algorithm devel-
oped in [12]. For the size L = 24, the number of elements
in {Q} is ¢N/8 which is as large as 10 368. However, the
algorithm is remarkably stable so that the sum rule

n=qN/8—1
S= ) Qu+Qus/2=2""" (20)

n=0

is satisfied with the relative error much less than 10~%. In
fact for the MC data used for L = 24, we have In(S) =
9581.17 which is only 0.002% off from the exact value,
In(2V-1) = 9581.3735.

In this analysis we used u. = 0.412050 [13] and the
exponent v = 0.63 [15], although we can determine these
numbers from our MC data by methods such as used in
the Refs. [13,9]. As usual we define t = K. — K, with
K = J/kgT and free energy density,

f=L"%In(Z). (21)

Both f, and f, are expanded in t and z variables as
fa= ant™/n! (22)
n=0

and

Lif, = Z cnz™/nl. (23)
n=0

Using the prescription given in [11] we determine the ex-
pansion coefficients and obtain 0.777 82(5), —0.9898(4),
and —30.4(2) for a,, 0.6243(1), —2.281(1), and 41.3(3)
for D"¢c,,, with n = 0,1, and 2. We limited our Taylor
series to the quadratic terms because we can calculate
them without considering corrections to scaling (see Ref.
[11]) and higher order terms in f, can be negligible if
L is sufficiently large unless they have unusually large
coefficients. In the above ag is the critical free energy
density which is estimated to be 0.77788(15) by series
method [14] and a; is the critical internal energy which
is estimated to be 0.9901(1) by series method [15] and a
previous estimation of ¢o by an MC method is 0.625(5)
[16]. This shows that our data agree well with the most
recent series estimates or other MC estimate with com-
parable or even better precision.

The construction of SPF is straightforward. Since we
now have the whole partition function in a polynomial in
u and the analytic partition function in a Taylor series
in t, we can simply extend our variables into complex u
or t. Using the complex u variable, we have now

Z,(w) = Z(u)/Za[r(u)e® ™). (24)

In Fig. 1 we plot the log of the SPF with L = 10,...,24
on the real axis to show the existence of the scaling func-
tion. The range on which this plot and subsequent plots
are made is [u. — 0.036(Lo/L)Y",u. + 0.036(Lo/L)'/*],
with Lo = 10 and v = 0.63. We believe that the region
near the boundary of this range is good enough to study
the asymptotic behavior of SPF for the system sizes we
calculated.

In Fig. 2 we plot the real and imaginary part of the SPF
for L = 24. Since both real and imaginary parts can take
negative values, it is not possible to plot the log of the
SPF on the complex u plane. Therefore we had to clip
the SPF surfaces both above and below a certain height.
These surfaces confirm the new scenario of the second-
order phase transition; namely there are two oscillating
domains separated by the domain of vanishing magnitude
in the asymptotic region. The phase angle 61 at which
the flat SPF begins is roughly equal to 47.62°, which is
90.0°/(dv).

In Fig. 3 we plot contours given by Egs. (12) and
(13). The curves start at circled points (open circles are
real part and solid circles are imaginary part contours).
The right hand side of the curves goes uphill (compare
with Fig. 2). In the upper semicircle, eight contours with
L =10,12,...,24 are drawn while in the lower semicircle
contours of three largest L, i.e., L = 20,22, and 24 are
drawn. It seems that for the system sizes larger than L =
20, the calculated SPF’s in the outmost circular band are
in the asymptotic region. In this region the asymptotic
behaviors of the calculated contours follow the predicted
contours given by Egs. (14) and (15). There seem to
be two zeros closest to real axes in the circular plotting
region (apart from the complex conjugates). Both zeros
are in the domain of flat SPF. The first zero is located
well short of the asymptotic region where the SPF still
has finite values. This is the reason that it can be located
rather easily. On the other hand the second zero is in
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FIG. 1. In[Z,(u;L)] = L%f,(u) vs real u with

L = 10,..,24, where u; = wu. — 0.036(L0/L)1/" and
uz = uc + 0.036(Lo/L)".
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FIG. 2. (a) Re[Zs(u;L)] vs complex v with L = 24. (b)
Im[Z,(u; L)] vs complex u with L = 24.

the truly flat region and the statistical errors bar the
determination of the precise location of the zero as we
see in Fig. 3.

The existence of the domain of the flat SPF can also
be explained by looking at the mathematical structure of
the complex SPF. Since the analytic partition function

|

Im(u)

0.0

He Re(u)

FIG. 3. Contours Re[Z;(u;L)] = 0 and Im[Z,(u;L)] = 0.
The plotting region is a circle with radius 0.036(Lo/L)*/" cen-
tered at u..

KOO-CHUL LEE 48

Z, is slowly varying in this tiny scaling regime the gross
features of SPF is more or less same as that of the total
partition function Z. Let us now substitute complex u =
ee* into Eq. (19) and write the real and imaginary part
of the Z separately as

n=qN/8
Re(Z) — Z Qn—qN/SQn COS[(TL — qN/S)’l?], (25)
and
n=qN/8
m(Z) = Y o /®Q,sin[(n - gN/8)9].  (26)

n=0

In the above, the summands are the canonical weight
factor o~ 9N/8Q,, which is a bell-shaped function (pri-
marily characteristic Gaussian; see Ref. [12]) multiplied
by the sinusoidal function of period 27 /9. As we move
away from the real axis, ¥ increases shortening the pe-
riod while the width of the bell which is a measure of the
thermal fluctuation grows large near the critical temper-
ature. When the period of sinusoidal function becomes
much smaller than the width of the bell, most of contri-
butions to the sum will be washed away by the oscillat-
ing sinusoidal factor making the magnitude of the SPF
diminish. The zeros may be formed when both sums van-
ish exactly by a delicate balancing of summands. Thus
any zeros farther away from the real axes will eventually
be fused into the sea of vanishing partition function.

There are several ways to determine the specific heat
amplitudes Ay defined by

C(T)/kp = Axlf™™ , (27)

where C(T')/kp is the specific heat per spin, o = 2 — dv
and £ = T/T. — 1, using the Egs. (14) and (15). In this
analysis we used end points of the asymptotic contour
lines of the real part of the SPF closest to the real axes
[Eq. (14) with k = 0]. In Fig. 3 these points correspond
to two open circles closest to the real axes on both sides.
If we designate the phase angles of these points by 63,
we obtain

Ay = w[—u.In(u.)]*dv(dv — 1)/2LE(0.036)? sin(dv%.).

(28)
For our best estimate, we have 1.335(5) for A4 and
2.474(5) for A_ with A,/A_ = 0.539(8). Only Ay

differ some 10% from the series estimates of 1.464(7)
and 2.79(3) [15] although the ratio is relatively close to
0.523(9) of the series estimate which is within the error
bounds.

IV. CONCLUSION

In conclusion we have presented an alternative scenario
for the second-order phase transition similar to the Lee-
Yang scenario of the first-order phase transition. Un-
like the case of the first-order phase transition, the two
phases are not separated by a single line but are joined
continuously by a finite domain of vanishing SPF in the
bulk limit if v > d~'. Zeros of the partition function
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appear to play no significant role in this case. Applying
the microcanonical MC method for the thermodynamic
functions and recently developed numerical technique of
separating the singular part of the partition function, a
complex SPF is calculated. The SPF so calculated are
found to confirm the proposed scenario in every detail.
Furthermore the example presented in this paper now
convinces us that the method of the complex SPF is cer-
tainly as good as the series method in solving statistical
models numerically and can be used for the study of the
second-order phase transition.
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